A363984 a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n,k)*binomial(n+k,k)*A363983(k).
1, 3, 73, 2163, 75001, 2835003, 113329945, 4711519347, 201638246905, 8824346685003, 393088036809073, 17764622316152715, 812477640612743977, 37535247213943518315, 1749047441756088054073, 82108960863923963522163, 3879675478363506548275705
Offset: 0
Examples
Examples of supercongruences: p = 11: a(11) - a(1) = 17764622316152715 - 3 = (2^3)*(3^2)*7*(11^3)*13*2037061001 == 0 (mod 11^3). a(11 - 1) - a(0) = 393088036809073 - 1 = (2^4)*3*(11^3)*29*67*1381*2293 == 0 (mod 11^3). p = 5: a(5^2) - a(5) = 5545311482504558271924122566108960335003 - 2835003 = (2^4)*3*(5^7)*11*31*91546780597609*23684663949545369 == 0 (mod 5^7). a(5^2 - 1) - a(5 - 1) = 113353062539459038723143413569578825001 - 75001 = (2^4)*3*(5^7)*(11^2)*29*53*162533449533306503812325773 == 0 (mod 5^7).
Links
- Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
- Eric W. Weisstein's World of Mathematics, Legendre Transform
- Eric W. Weisstein's World of Mathematics, Strehl identities
Comments