cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A364025 Semiprimes with no squarefree neighbors.

Original entry on oeis.org

26, 49, 51, 55, 91, 161, 235, 249, 295, 305, 339, 341, 362, 377, 413, 415, 451, 485, 489, 551, 559, 579, 629, 649, 667, 685, 687, 703, 721, 723, 737, 749, 849, 851, 917, 926, 949, 951, 955, 989, 1027, 1057, 1059, 1077, 1079, 1099, 1126, 1133, 1135, 1149, 1169, 1205, 1207, 1211, 1241
Offset: 1

Views

Author

Massimo Kofler, Jul 01 2023

Keywords

Examples

			25 = 5^2, 26 = 2 * 13, 27 = 3^3, so 26 is a term.
50 = 2 * 5^2, 51 = 3 * 17, 52 = 2^2 * 13, so 51 is a term.
		

Crossrefs

Intersection of A001358 and A281192.

Programs

  • Maple
    filter:= proc(n) uses numtheory; not issqrfree(n-1) and not issqrfree(n+1) and bigomega(n) = 2 end proc:
    selest(filter, [$1..2000]); # Robert Israel, Dec 12 2023
  • Mathematica
    Select[Range[1300], PrimeOmega[#] == 2 && ! AnyTrue[# + {-1, 1}, SquareFreeQ] &] (* Amiram Eldar, Jul 01 2023 *)
  • PARI
    isok(k) = (bigomega(k)==2) && !issquarefree(k-1) && !issquarefree(k+1); \\ Michel Marcus, Aug 12 2023

A362561 Sphenic numbers k such that none of k-2, k-1, k+1 and k+2 is squarefree.

Original entry on oeis.org

170, 530, 638, 874, 962, 1826, 2526, 2674, 2726, 2782, 2874, 3178, 3970, 4490, 4526, 4654, 5930, 6026, 6254, 7138, 7174, 8074, 8126, 8426, 8723, 8958, 8974, 9926, 10286, 10526, 10610, 11222, 11494, 11674, 11710, 11998, 12338, 12626, 12770, 12986, 13574, 15238, 15274, 15326, 15826
Offset: 1

Views

Author

Massimo Kofler, Sep 07 2023

Keywords

Examples

			168 = 2^3 * 3 * 7, 169 = 13^2, 170 = 2 * 5 * 17, 171 = 3^2 *19, 172 = 2^2 * 43, so 170 is a term.
528 = 2^4 * 3 * 11, 529 = 23^2, 530 = 2 * 5 * 53, 531 = 3^2 * 59, 532 = 2^2 * 7 * 19, so 532 is a term.
		

Crossrefs

Cf. A007304, A013929, A153215, A364010. Subsequence of A364905.

Programs

  • Mathematica
    Select[Range[17000], FactorInteger[#][[;; , 2]] == {1, 1, 1} && ! AnyTrue[# + {-2, -1, 1, 2}, SquareFreeQ] &] (* Amiram Eldar, Sep 07 2023 *)
Showing 1-2 of 2 results.