cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364026 Table read by descending antidiagonals. T(n,k) is the big Ramsey degree of k in w^n, where w is the first transfinite ordinal, omega.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 4, 1, 1, 0, 1, 26, 14, 1, 1, 0, 1, 236, 509, 49, 1, 1, 0, 1, 2752, 35839, 10340, 175, 1, 1, 0, 1, 39208, 4154652, 5941404, 222244, 637, 1, 1, 0, 1, 660032, 718142257, 7244337796, 1081112575, 4981531, 2353, 1, 1, 0, 1, 12818912, 173201493539
Offset: 0

Views

Author

Nathan Hurtig, Jul 01 2023

Keywords

Comments

T(n,k) is the least integer t such that, for all finite colorings of the k-subsets of w^n, there exists some S, an order-equivalent subset to w^n, where that coloring restricted to the k-subsets of S outputs at most t colors.
By Ramsey's theorem, the first row T(1,k)=1 for all k.
The second row T(2,k) coincides with A000311.
The second column T(n,2) coincides with A079309.

Examples

			The data is organized in a table beginning with row n = 0 and column k = 0. The data is read by descending antidiagonals. T(2,3)=26.
The table T(n,k) begins:
[n/k]   0   1      2        3       4         5   ...
--------------------------------------------------------------------
[0]     1,  1,     0,       0,      0,        0,  ...
[1]     1,  1,     1,       1,      1,        1,  ...
[2]     1,  1,     4,      26,    236,     2572,  ...
[3]     1,  1,    14,     509,  35839,  4154652,  ...
[4]     1,  1,    49,   10340,  ...
[5]     1,  1,   175,  222244,  ...
[6]     1,  1,   637,  ...
		

References

  • Dragan Mašulovic and Branislav Šobot, Countable ordinals and big Ramsey degrees, Combinatorica, 41 (2021), 425-446.
  • Alexander S. Kechris, Vladimir G. Pestov, and Stevo Todorčević, Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups, Geometric & Functional Analysis, 15 (2005), 106-189.

Crossrefs

T(2,k) is A000311. T(n,2) is A079309.

Programs

  • Haskell
    pp p n k
      | n == 0 && k >= 2 = 0
      | k == 0 && p == 0 = 1
      | k == 0 && p >= 1 = 0
      | n == 0 && k == 1 && p == 0 = 1
      | n == 0 && k == 1 && p >= 1 = 0
      | n == 1 && k >= 1 && k == p = 1
      | n == 1 && k >= 1 && k /= p = 0
      | n >= 2 && k >= 1 = sum [binom (p-1) i * pp i (n-1) j * pp (p-1-i) n (k-j) | i <- [0..p-1], j <- [1..k]]
    binom n 0 = 1
    binom 0 k = 0
    binom n k = binom (n-1) (k-1) * n `div` k
    a364026 n k =
      sum [pp p n k | p <- [0..n*k]]

Formula

T(n,k) = Sum_{p=0..n*k} P(p,n,k), where for n >= 2 and k >= 1,
P(0,n,k) = 0, and for p >= 1,
P(p,n,k) = Sum_{j=1..k} Sum_{0..p-1} binomial(p-1,i)*P(i,n-1,j)*P(p-1-i,n,k-j).