cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A364029 Odd squarefree semiprimes s = p*q such that (p + q)/2 and (p - q)/2 are squarefree.

Original entry on oeis.org

21, 35, 51, 69, 85, 91, 93, 123, 133, 187, 213, 219, 221, 235, 237, 253, 259, 267, 339, 341, 355, 365, 371, 381, 395, 411, 413, 437, 445, 451, 453, 469, 485, 493, 501, 573, 611, 635, 667, 669, 685, 699, 723, 731, 755, 763, 771, 779, 781, 789, 803, 813, 843, 851, 893, 899
Offset: 1

Views

Author

Hugo Pfoertner, Jul 01 2023

Keywords

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F,p,q;
      F:= ifactors(n)[2];
      if nops(F) <> 2 or F[1,2] <> 1 or F[2,2] <> 1 then return false fi;
      p:= F[1,1]; q:= F[2,1];
      numtheory:-issqrfree((p+q)/2) and numtheory:-issqrfree(abs(p-q)/2)
    end proc:
    select(filter, [seq(i,i=1..1000,2)]); # Robert Israel, Dec 12 2023
  • Mathematica
    okQ[n_] := MatchQ[FactorInteger[n], {{p_, 1}, {q_, 1}} /; SquareFreeQ[(p + q)/2] && SquareFreeQ[(q - p)/2]];
    Select[Range[1, 1000, 2], okQ] (* Jean-François Alcover, Jun 04 2024 *)
  • PARI
    forstep (k = 15, 900, 2, if (omega(k)==2 && bigomega(k)==2, my (F=factorint(k)); if ( issquarefree((F[2, 1]-F[1, 1])/2) && issquarefree((F[2, 1]+F[1, 1])/2), print1(k, ", "))))
Showing 1-1 of 1 results.