cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364044 Expansion of Sum_{k>0} x^(2*k) / (1 + x^(5*k)).

Original entry on oeis.org

0, 1, 0, 1, 0, 1, -1, 1, 0, 1, 0, 2, 0, 0, 0, 1, -1, 1, 0, 1, -1, 2, 0, 2, 0, 1, -1, 0, 0, 1, 0, 2, 0, 0, -1, 2, -1, 1, 0, 1, 0, 1, 0, 2, 0, 1, -1, 2, -1, 1, -1, 2, 0, 0, 0, 0, -1, 1, 0, 2, 0, 2, -1, 2, 0, 2, -1, 0, 0, 0, 0, 3, 0, 0, 0, 1, -2, 1, 0, 1, -1, 2, 0, 2, -1, 1, -1, 2, 0, 1, -1, 2, 0, 0, 0, 3, -1, 0, 0, 1
Offset: 1

Views

Author

Seiichi Manyama, Jul 03 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^# &, Mod[#, 5] == 2 &]; Array[a, 100] (* Amiram Eldar, Jul 03 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%5==2)*(-1)^d);

Formula

G.f.: Sum_{k>0} (-1)^(k-1) * x^(5*k-3) / (1 - x^(5*k-3)).
a(n) = Sum_{d|n, d==2 (mod 5)} (-1)^d.