cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364045 Expansion of Sum_{k>0} x^(3*k) / (1 + x^(5*k)).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, -1, 1, 0, 0, 1, 1, 0, 1, -1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, -1, 0, 1, 0, -1, 2, 0, 0, 0, 0, -1, 2, -1, 0, 1, 1, 0, 1, 1, 0, -1, 0, 0, 1, 1, 1, 0, 0, -2, 1, -1, 0, 1, 0, 0, 2, -1, 1, 2, 0, -1, 2, 0, 0, -1, 1, 0, 1, -1, 0, 1, 0, -1, 1, 0, 1, 0, 0, 1, 1, -2, 0, 0, 1, 1, 2, 0, 0, -1, 0, -1, 2, 0, 0, 1
Offset: 1

Views

Author

Seiichi Manyama, Jul 03 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := -DivisorSum[n, (-1)^# &, Mod[#, 5] == 3 &]; Array[a, 100] (* Amiram Eldar, Jul 05 2023 *)
  • PARI
    a(n) = -sumdiv(n, d, (d%5==3)*(-1)^d);

Formula

G.f.: Sum_{k>0} (-1)^(k-1) * x^(5*k-2) / (1 - x^(5*k-2)).
a(n) = -Sum_{d|n, d==3 (mod 5)} (-1)^d.