A364071 Triangle read by rows: T(n, k) = Sum_{d=0..n-k} binomial(n, d)*StirlingS2(n-d, k)*8^(n-d-k), with 0 <= k <= n.
1, 1, 1, 1, 10, 1, 1, 91, 27, 1, 1, 820, 550, 52, 1, 1, 7381, 10170, 1850, 85, 1, 1, 66430, 180271, 56420, 4655, 126, 1, 1, 597871, 3131037, 1590771, 210035, 9821, 175, 1, 1, 5380840, 53825500, 42900312, 8521926, 612696, 18396, 232, 1, 1, 48427561, 920414340, 1126333300, 324123870, 33642462, 1514100, 31620, 297, 1
Offset: 0
Examples
The triangle begins: 1; 1, 1; 1, 10, 1; 1, 91, 27, 1; 1, 820, 550, 52, 1; 1, 7381, 10170, 1850, 85, 1; 1, 66430, 180271, 56420, 4655, 126, 1; 1, 597871, 3131037, 1590771, 210035, 9821, 175, 1; ...
Links
- Prudence Djagba and Jan Hązła, Combinatorics of subgroups of Beidleman near-vector spaces, arXiv:2306.16421 [math.RA], 2023. See pp. 7-8.
Programs
-
Mathematica
T[n_,k_]:=Sum[Binomial[n,d]StirlingS2[n-d,k]8^(n-d-k),{d,0,n-k}]; Table[T[n,k],{n,0,9},{k,0,n}]//Flatten
Comments