cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364072 Triangle read by rows: T(n, k) = Sum_{d=0..n-k} binomial(n, d)*StirlingS2(n-d, k)*63^(n-d-k), with 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 65, 1, 1, 4161, 192, 1, 1, 266305, 28545, 382, 1, 1, 17043521, 3891520, 101125, 635, 1, 1, 1090785345, 511266561, 23105270, 261780, 951, 1, 1, 69810262081, 66021638592, 4901267861, 89335610, 562296, 1330, 1, 1, 4467856773185, 8454558363265, 997262532182, 27503177191, 267021146, 1066366, 1772, 1
Offset: 0

Views

Author

Stefano Spezia, Jul 04 2023

Keywords

Comments

T(n, k) is the number of 64-subgroups of R^n which have dimension k, where R^n is a near-vector space over a proper nearfield R.

Examples

			The triangle begins:
  1;
  1,          1;
  1,         65,         1;
  1,       4161,       192,        1;
  1,     266305,     28545,      382,      1;
  1,   17043521,   3891520,   101125,    635,   1;
  1, 1090785345, 511266561, 23105270, 261780, 951, 1;
  ...
		

Crossrefs

Cf. A000012 (k=0), A133853 (k=1), A364069 (row sums), A364071, A364073.

Programs

  • Mathematica
    T[n_,k_]:=Sum[Binomial[n,d]StirlingS2[n-d,k]63^(n-d-k),{d,0,n-k}]; Table[T[n,k],{n,0,8},{k,0,n}]//Flatten