cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364074 Array read by ascending antidiagonals: A(m, n) = Sum_{i=0..n} Sum_{d=0..n-i} binomial(n, d)*StirlingS2(n-d, i)*(m^(m-1) - 1)^(n-d-i).

Original entry on oeis.org

1, 1, 2, 1, 2, 12, 1, 2, 67, 120, 1, 2, 628, 4355, 1424, 1, 2, 7779, 393128, 295234, 19488, 1, 2, 117652, 60497283, 247268752, 21036803, 307904, 1, 2, 2097155, 13841757800, 470668752866, 156500388128, 1625419909, 5539712, 1, 2, 43046724, 4398054899715, 1628524328796304, 3663682367243907, 100264147266880, 140823067772, 111259904
Offset: 2

Views

Author

Stefano Spezia, Jul 04 2023

Keywords

Comments

A(m, n) is the number of all ((m+1)^m)-subgroups of R^n, where R^n is a near-vector space over a proper nearfield R.

Examples

			The array begins:
  1, 2,   12,      120,         1424,            19488, ...
  1, 2,   67,     4355,       295234,         21036803, ...
  1, 2,  628,   393128,    247268752,     156500388128, ...
  1, 2, 7779, 60497283, 470668752866, 3663682367243907, ...
  ...
		

Crossrefs

Cf. A003580 (m=2), A364069 (m=3), A364070 (m=4), A364075 (antidiagonal sums).

Programs

  • Mathematica
    A[m_,n_]:=Sum[Sum[Binomial[n,d]StirlingS2[n-d,i](m^(m-1)-1)^(n-d-i),{d,0,n-i}],{i,0,n}]; Table[A[m-n+1,n],{m,2,10},{n,0,m-2}]//Flatten