A364074 Array read by ascending antidiagonals: A(m, n) = Sum_{i=0..n} Sum_{d=0..n-i} binomial(n, d)*StirlingS2(n-d, i)*(m^(m-1) - 1)^(n-d-i).
1, 1, 2, 1, 2, 12, 1, 2, 67, 120, 1, 2, 628, 4355, 1424, 1, 2, 7779, 393128, 295234, 19488, 1, 2, 117652, 60497283, 247268752, 21036803, 307904, 1, 2, 2097155, 13841757800, 470668752866, 156500388128, 1625419909, 5539712, 1, 2, 43046724, 4398054899715, 1628524328796304, 3663682367243907, 100264147266880, 140823067772, 111259904
Offset: 2
Examples
The array begins: 1, 2, 12, 120, 1424, 19488, ... 1, 2, 67, 4355, 295234, 21036803, ... 1, 2, 628, 393128, 247268752, 156500388128, ... 1, 2, 7779, 60497283, 470668752866, 3663682367243907, ... ...
Links
- Prudence Djagba and Jan Hązła, Combinatorics of subgroups of Beidleman near-vector spaces, arXiv:2306.16421 [math.RA], 2023. See pp. 7-8.
Programs
-
Mathematica
A[m_,n_]:=Sum[Sum[Binomial[n,d]StirlingS2[n-d,i](m^(m-1)-1)^(n-d-i),{d,0,n-i}],{i,0,n}]; Table[A[m-n+1,n],{m,2,10},{n,0,m-2}]//Flatten
Comments