A364111 a(n) = Sum_{k = 0..n} binomial(n+k-1,k)^2 * binomial(2*n-2*k,n-k) * binomial(2*k,k).
1, 4, 76, 2560, 106060, 4864504, 237354880, 12079462560, 633885607500, 34050190896040, 1863047125801576, 103465470769890112, 5817117095161011328, 330450303019252600240, 18937657945720403830240, 1093557503049551583194560, 63566414131528881235953228, 3716526456851323626808570632
Offset: 0
Links
- Peter Bala, A recurrence for A364111.
- Robert Osburn and Brundaban Sahu, A supercongruence for generalized Domb numbers, arXiv:1201.6195v2 [math.NT], Functiones et Approximatio. Comment. Math, Vol. 48, No 1, March 2013, 29-36.
Programs
-
Maple
seq(add(binomial(n+k-1,k)^2 * binomial(2*n-2*k,n-k) * binomial(2*k,k)), n = 0..20); # faster program for large n seq(simplify(binomial(2*n,n)*hypergeom([-n, n, n, 1/2], [1, 1, 1/2 - n], 1)), n = 0..20);
-
Mathematica
Table[Binomial[2*n,n] * HypergeometricPFQ[{-n, n, n, 1/2}, {1, 1, 1/2 - n}, 1], {n, 0, 20}] (* Vaclav Kotesovec, Jul 09 2023 *)
Formula
a(n) = Sum_{k = 0..n} binomial(-n,k)^2 * binomial(2*n-2*k,n-k) * binomial(2*k,k).
a(n) = binomial(2*n,n)*hypergeom([-n, n, n, 1/2], [1, 1, 1/2 - n], 1).
a(n) ~ 2^(6*n-1) / (sqrt(3) * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Jul 09 2023
Comments