A364116 a(n) = [x^n] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x))^n for n >= 0.
1, 3, 73, 5623, 908001, 251831261, 106898093065, 64439674636863, 52344140654486017, 55113399257643294769, 73004404532578627776801, 118810038754810358401521065, 233027150139808176596750408337, 542098915811219991386976197616441
Offset: 0
Programs
-
Maple
a(n) := coeff(series( 1/(1-x)* LegendreP(n,(1+x)/(1-x))^n, x, 21), x, n): seq(a(n), n = 0..20);
-
Mathematica
Table[SeriesCoefficient[1/(1 - x) * LegendreP[n, (1 + x)/(1 - x)]^n, {x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Jul 09 2023 *)
Formula
Conjectures:
1) a(p) == 2*p + 1 (mod p^4) for all primes p >= 3 (checked up to p = 101).
More generally, the supercongruence a(p^k) == 2*p^k + 1 (mod p^(3+k)) may hold for all primes p >= 5 and all k >= 1.
2) a(p-1) == 1 (mod p^3) for all primes p >= 5 (checked up to p = 101).
More generally, the supercongruence a(p^k - p^(k-1)) == 1 (mod p^(2+k)) may hold for all primes p >= 5 and all k >= 1.
From Vaclav Kotesovec, Jul 10 2023: (Start)
a(n) ~ c * d^n * n^(2*n - 1/2), where d = 2.102423770105721036432437141524634595160013830317976222331887376263238499... (the same as for A033935) and c = 1.325068544739430738025458046917491360304162175529817456184402029433873399...
a(n) ~ A033935(n) * exp(2*n + 1) / (2*Pi*n).
a(n) ~ A033935(n) * exp(1) * n^(2*n) / n!^2. (End)
Comments