cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364116 a(n) = [x^n] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x))^n for n >= 0.

Original entry on oeis.org

1, 3, 73, 5623, 908001, 251831261, 106898093065, 64439674636863, 52344140654486017, 55113399257643294769, 73004404532578627776801, 118810038754810358401521065, 233027150139808176596750408337, 542098915811219991386976197616441
Offset: 0

Views

Author

Peter Bala, Jul 08 2023

Keywords

Comments

Main diagonal of A364113.
Compare with the two types of Apéry numbers A005258 and A005259, which are related to the Legendre polynomials by A005258(n) = [x^n] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x)) and A005259(n) = [x^k] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x))^2.
A005258 is the main diagonal of A108625 and A005259 is the main diagonal of A143007.

Crossrefs

Programs

  • Maple
    a(n) := coeff(series( 1/(1-x)* LegendreP(n,(1+x)/(1-x))^n, x, 21), x, n):
    seq(a(n), n = 0..20);
  • Mathematica
    Table[SeriesCoefficient[1/(1 - x) * LegendreP[n, (1 + x)/(1 - x)]^n, {x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Jul 09 2023 *)

Formula

Conjectures:
1) a(p) == 2*p + 1 (mod p^4) for all primes p >= 3 (checked up to p = 101).
More generally, the supercongruence a(p^k) == 2*p^k + 1 (mod p^(3+k)) may hold for all primes p >= 5 and all k >= 1.
2) a(p-1) == 1 (mod p^3) for all primes p >= 5 (checked up to p = 101).
More generally, the supercongruence a(p^k - p^(k-1)) == 1 (mod p^(2+k)) may hold for all primes p >= 5 and all k >= 1.
From Vaclav Kotesovec, Jul 10 2023: (Start)
a(n) ~ c * d^n * n^(2*n - 1/2), where d = 2.102423770105721036432437141524634595160013830317976222331887376263238499... (the same as for A033935) and c = 1.325068544739430738025458046917491360304162175529817456184402029433873399...
a(n) ~ A033935(n) * exp(2*n + 1) / (2*Pi*n).
a(n) ~ A033935(n) * exp(1) * n^(2*n) / n!^2. (End)