cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364155 Number of tilings of a 4 X n rectangle using dominoes and trominoes (of any shape).

Original entry on oeis.org

1, 1, 17, 145, 1352, 12688, 115958, 1075397, 9935791, 91795006, 848550447, 7841290657, 72469286374, 669744449380, 6189592846538, 57202915584686, 528655401099501, 4885709752947038, 45152583446359974, 417289539653241534, 3856491950197255757, 35640791884109598908
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2023

Keywords

Examples

			a(2) = 17:
  .___.  .___.  .___.  .___.  .___.  .___.  .___.  .___.  .___.
  | | |  |___|  |___|  | | |  |___|  |___|  | | |  | ._|  |_. |
  | | |  | | |  |___|  |_|_|  | | |  |___|  |_|_|  |_| |  | |_|
  |_|_|  | | |  |___|  |___|  |_|_|  | | |  | | |  |___|  |___|
  |___|  |_|_|  |___|  |___|  |___|  |_|_|  |_|_|  |___|  |___|
.
  .___.  .___.  .___.  .___.  .___.  .___.  .___.  .___.
  |___|  |___|  | | |  | | |  |_. |  | ._|  |_. |  | ._|
  | ._|  |_. |  | |_|  |_| |  | |_|  |_| |  | |_|  |_| |
  |_| |  | |_|  |_| |  | |_|  | | |  | | |  |_| |  | |_|
  |___|  |___|  |___|  |___|  |_|_|  |_|_|  |___|  |___|  .
		

Crossrefs

Column k=4 of A364457.

Formula

G.f.: -(x^42 -3*x^41 +2*x^40 -27*x^39 +20*x^38 -47*x^37 +679*x^36 -807*x^35 +971*x^34 -3668*x^33 +4911*x^32 -17380*x^31 +41345*x^30 -21439*x^29 +1694*x^28 -117750*x^27 +184140*x^26 -41964*x^25 +99138*x^24 -180813*x^23 +70242*x^22 -240711*x^21 +162785*x^20 +46241*x^19 +117557*x^18 -67141*x^17 +25483*x^16 -51680*x^15 -25799*x^14 +7385*x^13 +5758*x^12 -1195*x^11 +1461*x^10 +2940*x^9 -1582*x^8 +1207*x^7 +281*x^6 -199*x^5 -31*x^4 -67*x^3 -22*x^2 -3*x +1) / (x^45 -4*x^44 -15*x^43 -10*x^42 +187*x^41 -211*x^40 +112*x^39 +653*x^38 +3519*x^37 -17169*x^36 +12166*x^35 -10114*x^34 +56406*x^33 -139986*x^32 +336502*x^31 -459720*x^30 +309573*x^29 -410529*x^28 +1231995*x^27 -1670818*x^26 +883613*x^25 -1050005*x^24 +1530359*x^23 -1044441*x^22 +1664063*x^21 -1162643*x^20 +189181*x^19 -701476*x^18 +413937*x^17 -243226*x^16 +257069*x^15 +69116*x^14 -27774*x^13 -9998*x^12 +5208*x^11 -12030*x^10 -3922*x^9 +3364*x^8 -2794*x^7 -335*x^6 +452*x^5 +99*x^4 +109*x^3 +35*x^2 +4*x -1).

Extensions

Terms n>=4 had to be corrected as was pointed out by Martin Fuller and David Radcliffe - Alois P. Heinz, Apr 05 2025