A364155 Number of tilings of a 4 X n rectangle using dominoes and trominoes (of any shape).
1, 1, 17, 145, 1352, 12688, 115958, 1075397, 9935791, 91795006, 848550447, 7841290657, 72469286374, 669744449380, 6189592846538, 57202915584686, 528655401099501, 4885709752947038, 45152583446359974, 417289539653241534, 3856491950197255757, 35640791884109598908
Offset: 0
Examples
a(2) = 17: .___. .___. .___. .___. .___. .___. .___. .___. .___. | | | |___| |___| | | | |___| |___| | | | | ._| |_. | | | | | | | |___| |_|_| | | | |___| |_|_| |_| | | |_| |_|_| | | | |___| |___| |_|_| | | | | | | |___| |___| |___| |_|_| |___| |___| |___| |_|_| |_|_| |___| |___| . .___. .___. .___. .___. .___. .___. .___. .___. |___| |___| | | | | | | |_. | | ._| |_. | | ._| | ._| |_. | | |_| |_| | | |_| |_| | | |_| |_| | |_| | | |_| |_| | | |_| | | | | | | |_| | | |_| |___| |___| |___| |___| |_|_| |_|_| |___| |___| .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1036
- Wikipedia, Domino (mathematics)
- Wikipedia, Tromino
- Index entries for linear recurrences with constant coefficients, signature (4,35,109,99,452,-335, -2794,3364,-3922,-12030,5208,-9998,-27774,69116,257069,-243226,413937,-701476, 189181,-1162643,1664063,-1044441,1530359,-1050005,883613,-1670818,1231995, -410529,309573,-459720,336502,-139986,56406,-10114,12166,-17169,3519,653,112, -211,187,-10,-15,-4,1).
Crossrefs
Column k=4 of A364457.
Formula
G.f.: -(x^42 -3*x^41 +2*x^40 -27*x^39 +20*x^38 -47*x^37 +679*x^36 -807*x^35 +971*x^34 -3668*x^33 +4911*x^32 -17380*x^31 +41345*x^30 -21439*x^29 +1694*x^28 -117750*x^27 +184140*x^26 -41964*x^25 +99138*x^24 -180813*x^23 +70242*x^22 -240711*x^21 +162785*x^20 +46241*x^19 +117557*x^18 -67141*x^17 +25483*x^16 -51680*x^15 -25799*x^14 +7385*x^13 +5758*x^12 -1195*x^11 +1461*x^10 +2940*x^9 -1582*x^8 +1207*x^7 +281*x^6 -199*x^5 -31*x^4 -67*x^3 -22*x^2 -3*x +1) / (x^45 -4*x^44 -15*x^43 -10*x^42 +187*x^41 -211*x^40 +112*x^39 +653*x^38 +3519*x^37 -17169*x^36 +12166*x^35 -10114*x^34 +56406*x^33 -139986*x^32 +336502*x^31 -459720*x^30 +309573*x^29 -410529*x^28 +1231995*x^27 -1670818*x^26 +883613*x^25 -1050005*x^24 +1530359*x^23 -1044441*x^22 +1664063*x^21 -1162643*x^20 +189181*x^19 -701476*x^18 +413937*x^17 -243226*x^16 +257069*x^15 +69116*x^14 -27774*x^13 -9998*x^12 +5208*x^11 -12030*x^10 -3922*x^9 +3364*x^8 -2794*x^7 -335*x^6 +452*x^5 +99*x^4 +109*x^3 +35*x^2 +4*x -1).
Extensions
Terms n>=4 had to be corrected as was pointed out by Martin Fuller and David Radcliffe - Alois P. Heinz, Apr 05 2025