A364159 Number of integer partitions of n - 1 containing fewer 1's than any other part.
0, 1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 15, 20, 23, 32, 40, 50, 61, 82, 95, 126, 149, 188, 228, 292, 337, 430, 510, 633, 748, 933, 1083, 1348, 1579, 1925, 2262, 2761, 3197, 3893, 4544, 5458, 6354, 7634, 8835, 10577, 12261, 14546, 16864, 19990, 23043, 27226, 31428
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 7 partitions: (1) (11) (21) (31) (41) (51) (61) (71) (111) (1111) (221) (321) (331) (431) (11111) (2211) (421) (521) (111111) (2221) (3221) (1111111) (3311) (22211) (11111111)
Crossrefs
Counts partitions ranked by A364158.
Ranking and counting partitions:
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n-1],Count[#,1]
Comments