A364175 a(n) = (6*n)!*(2*n/3)!/((3*n)!*(2*n)!*(5*n/3)!).
1, 36, 3564, 408408, 49697388, 6249195036, 802241960520, 104466877291260, 13746018177013356, 1823169705017624880, 243331037661693468564, 32641262295291161362656, 4396944340992842923469640, 594371374049863341847620936, 80586283761263090599592845140
Offset: 0
Links
- J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., 79, Issue 2, (2009), 422-444.
Crossrefs
Programs
-
Maple
seq( simplify((6*n)!*(2*n/3)!/((3*n)!*(2*n)!*(5*n/3)!)), n = 0..15);
Formula
a(n) ~ c^n * 1/sqrt(5*Pi*n) where c = (1296/25)*20^(1/3) = 140.7154092442799....
a(n) = 93312*(2*n - 3)*(6*n - 1)*(6*n - 5)*(6*n - 7)*(6*n - 11)*(6*n - 13)*(6*n - 17)/(5*n*(n - 1)*(n - 2)*(5*n - 3)*(5*n - 6)*(5*n - 9)*(5*n - 12))*a(n-3) with a(0) = 1, a(1) = 36 and a(2) = 3564.
Comments