A364176 a(n) = (15*n)!*(5*n/2)!*(2*n)!/((15*n/2)!*(6*n)!*(5*n)!*n!).
1, 7168, 168043980, 4488240824320, 126694219977836700, 3688258943632086663168, 109504706026534324525391988, 3295939064766794222800490987520, 100204869963549181630558779565943580, 3070025447039504554088467623457608171520, 94632263448378916462441320194245442445186480
Offset: 0
Links
- J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., 79, Issue 2, (2009), 422-444.
Crossrefs
Programs
-
Maple
seq( simplify((15*n)!*(5*n/2)!*(2*n)!/((15*n/2)!*(6*n)!*(5*n)!*n!)), n = 0..15)
Formula
a(n) ~ c^n * 1/sqrt(6*Pi*n), where c = 18750*sqrt(3).
a(n) = 4800*(15*n - 1)*(15*n - 7)*(15*n - 11)*(15*n - 13)*(15*n - 17)*(15*n - 19)*(15*n - 23)*(15*n - 29)/(n*(n - 1)*(3*n - 2)*(3*n - 4)*(6*n - 1)*(6*n - 5)*(6*n - 7)*(6*n - 11))*a(n-2) with a(0) = 1 and a(1) = 7168.
Comments