cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364177 a(n) = (15*n)!*(5*n/2)!*(2*n)!/((15*n/2)!*(5*n)!*(4*n)!*(3*n)!).

Original entry on oeis.org

1, 35840, 5545451340, 991901222174720, 188242272043069768860, 36901030731039027064995840, 7383354803839076831124554790900, 1498315221854950975184507333477662720, 307213802011837003346320048243705086348060
Offset: 0

Views

Author

Peter Bala, Jul 13 2023

Keywords

Comments

A295458, defined by A295458(n) = (30*n)!*(5*n)!*(4*n)! / ((15*n)!*(10*n)!*(8*n)!*(6*n)!), is one of the 52 sporadic integral factorial ratio sequences of height 1 found by V. I. Vasyunin (see Bober, Table 2, Entry 28). Here we are essentially considering the sequence {A295458(n/2) : n >= 0}. Fractional factorials are defined in terms of the gamma function; for example, (5*n/2)! := Gamma(1 + 5*n/2).
This sequence is only conjecturally an integer sequence.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r.

Crossrefs

Programs

  • Maple
    seq( simplify((15*n)!*(5*n/2)!*(2*n)!/((15*n/2)!*(5*n)!*(4*n)!*(3*n)!)), n = 0..15);

Formula

a(n) ~ c^n * 1/sqrt(12*Pi*n), where c = (3^4)*(5^5) * sqrt(3)/2.
a(n) = 43200*(15*n - 1)*(15*n - 7)*(15*n - 11)*(15*n - 13)*(15*n - 17)*(15*n - 19)*(15*n - 23)*(15*n - 29)/(n*(n - 1)*(3*n - 2)*(3*n - 4)*(4*n - 1)*(4*n - 3)*(4*n - 5)*(4*n - 7))*a(n-2) with a(0) = 1 and a(1) = 35840.