cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364178 a(n) = (10*n)!*(3*n)!*(n/2)!/((6*n)!*(5*n)!*(3*n/2)!*n!).

Original entry on oeis.org

1, 168, 83980, 48664320, 29966636700, 19075222663168, 12398706131799988, 8175717823943147520, 5447952226877283703580, 3659442300478634742251520, 2473617870747229982625186480, 1680586987551894402985233481728, 1146602219745194113307246953503300
Offset: 0

Views

Author

Peter Bala, Jul 13 2023

Keywords

Comments

A295470, defined by A295470(n) = (20*n)!*(6*n)!*n! / ((12*n)!*(10*n)!*(3*n)!*(2*n)!), is one of the 52 sporadic integral factorial ratio sequences of height 1 found by V. I. Vasyunin (see Bober, Table 2, Entry 40). Here we are essentially considering the sequence {A295470(n/2) : n >= 0}. Fractional factorials are defined in terms of the gamma function; for example, (3*n/2)! := Gamma(1 + 3*n/2).
This sequence is only conjecturally an integer sequence.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r.

Crossrefs

Programs

  • Maple
    seq( simplify((10*n)!*(3*n)!*(n/2)!/((6*n)!*(5*n)!*(3*n/2)!*n!)), n = 0..15);

Formula

a(n) ~ c^n * 1/sqrt(6*Pi*n), where c = (10/3)^5 * sqrt(3).
a(n) = 1600*(10*n - 1)*(10*n - 3)*(10*n - 7)*(10*n - 9)*(10*n - 11)*(10*n - 13)*(10*n - 17)*(10*n - 19)/(27*n*(n - 1)*(3*n - 2)*(3*n - 4)*(6*n - 1)*(6*n - 5)*(6*n - 7)*(6*n - 11))*a(n-2) with a(0) = 1 and a(1) = 168.