cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364179 a(n) = (10*n)!*(n/2)!/((5*n)!*(4*n)!*(3*n/2)!).

Original entry on oeis.org

1, 840, 2771340, 10754814720, 44524428808860, 190847602744995840, 835982760936614190900, 3716634993696885851422720, 16702642470437308383606668060, 75679458912906782280286032887808, 345116202503279265243707597937393840, 1581997780375359530321517073184807976960
Offset: 0

Views

Author

Peter Bala, Jul 13 2023

Keywords

Comments

A295471, defined by A295471(n) = (20*n)!*n! / ((10*n)!*(8*n)!*(3*n)!), is one of the 52 sporadic integral factorial ratio sequences of height 1 found by V. I. Vasyunin (see Bober, Table 2, Entry 41). Here we are essentially considering the sequence {A295471(n/2) : n >= 0}. Fractional factorials are defined in terms of the gamma function; for example, (3*n/2)! := Gamma(1 + 3*n/2).
This sequence is only conjecturally an integer sequence.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r.

Crossrefs

Programs

  • Maple
    seq( simplify((10*n)!*(n/2)!/((5*n)!*(4*n)!*(3*n/2)!)), n = 0..15);

Formula

a(n) ~ c^n * 1 /sqrt(12*Pi*n), where c = (2^3)*(5^5)/(3^2) * sqrt(3).
a(n) = 1600*(10*n - 1)*(10*n - 3)*(10*n - 7)*(10*n - 9)*(10*n - 11)*(10*n - 13)*(10*n - 17)*(10*n - 19)/(n*(3*n - 1)*(3*n - 2)*(3*n - 4)*(4*n - 1)*(4*n - 3)*(4*n - 5)*(4*n - 7))*a(n-2) with a(0) = 1 and a(1) = 840.