A364181 a(n) = (10*n)!*(3*n/2)!/((5*n)!*(9*n/2)!*(2*n)!).
1, 384, 461890, 638582784, 935387159850, 1414457284624384, 2182519096151533552, 3414991108739243704320, 5398397695681095146608490, 8600772808890306913527398400, 13787702861800799166026014363140, 22213518902232966637201617101783040, 35936545440404705429404600374145350960
Offset: 0
Links
- J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., 79, Issue 2, (2009), 422-444.
Crossrefs
Programs
-
Maple
seq( simplify((10*n)!*(3*n/2)!/((5*n)!*(9*n/2)!*(2*n)!)), n = 0..15);
Formula
a(n) ~ c^n * 1/sqrt(6*Pi*n), where c = (2^11)*(5^5)/(3^8)*sqrt(3).
a(n) = 409600*(10*n - 1)*(10*n - 3)*(10*n - 7)*(10*n - 9)*(10*n - 11)*(10*n - 13)*(10*n - 17)*(10*n - 19)/(27*n*(n - 1)*(9*n - 2)*(9*n - 4)*(9*n - 8)*(9*n - 10)*(9*n - 14)*(9*n - 16))*a(n-2) with a(0) = 1 and a(1) = 384
Comments