cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364182 a(n) = (12*n)!*(n/2)!/((6*n)!*(4*n)!*(5*n/2)!).

Original entry on oeis.org

1, 7392, 267711444, 11489451294720, 527048385075849780, 25051434899696246587392, 1217325447549161369383451760, 60050961586064738516089033457664, 2994861478939539397101967737771147060, 150602318360773064327512837557840362078208
Offset: 0

Views

Author

Peter Bala, Jul 13 2023

Keywords

Comments

A295477, defined by A295477(n) = (24*n)!*n! / ((12*n)!*(8*n)!*(5*n)!), is one of the 52 sporadic integral factorial ratio sequences of height 1 found by V. I. Vasyunin (see Bober, Table 2, Entry 47). Here we are essentially considering the sequence {A295477(n/2) : n >= 0}. Fractional factorials are defined in terms of the gamma function; for example, (5*n/2)! := Gamma(1 + 5*n/2).
This sequence is only conjecturally an integer sequence.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r.

Crossrefs

Programs

  • Maple
    seq( simplify((12*n)!*(n/2)!/((6*n)!*(4*n)!*(5*n/2)!)), n = 0..15);

Formula

a(n) ~ c^n * 1/sqrt(20*Pi*n), where c = (2^12)*(3^6)/(5^3) * sqrt(5).
a(n) = 82944*(12*n - 1)*(12*n - 5)(12*n - 7)*(12*n - 11)*(12*n - 13)*(12*n - 17)*(12*n - 19)*(12*n - 23)/(5*n*(n - 1)*(2*n - 1)*(2*n - 3)*(5*n - 2)*(5*n - 4)*(5*n - 6)*(5*n - 8))*a(n-2) with a(0) = 1 and a(1) = 7392