A364182 a(n) = (12*n)!*(n/2)!/((6*n)!*(4*n)!*(5*n/2)!).
1, 7392, 267711444, 11489451294720, 527048385075849780, 25051434899696246587392, 1217325447549161369383451760, 60050961586064738516089033457664, 2994861478939539397101967737771147060, 150602318360773064327512837557840362078208
Offset: 0
Links
- J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., 79, Issue 2, (2009), 422-444.
Crossrefs
Programs
-
Maple
seq( simplify((12*n)!*(n/2)!/((6*n)!*(4*n)!*(5*n/2)!)), n = 0..15);
Formula
a(n) ~ c^n * 1/sqrt(20*Pi*n), where c = (2^12)*(3^6)/(5^3) * sqrt(5).
a(n) = 82944*(12*n - 1)*(12*n - 5)(12*n - 7)*(12*n - 11)*(12*n - 13)*(12*n - 17)*(12*n - 19)*(12*n - 23)/(5*n*(n - 1)*(2*n - 1)*(2*n - 3)*(5*n - 2)*(5*n - 4)*(5*n - 6)*(5*n - 8))*a(n-2) with a(0) = 1 and a(1) = 7392
Comments