cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364186 Primes p such that p divides 2^((p-1)/x) - 1, where x is the smallest odd prime factor of p - 1.

Original entry on oeis.org

31, 43, 109, 127, 157, 223, 229, 251, 277, 283, 307, 397, 431, 433, 439, 457, 499, 601, 641, 643, 691, 727, 733, 739, 811, 911, 919, 953, 971, 997, 1013, 1021, 1051, 1069, 1093, 1103, 1163, 1181, 1327, 1399, 1423, 1459, 1471, 1579, 1597, 1627, 1657, 1699, 1709
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 15 2023

Keywords

References

  • Allan Cunningham, Haupt-exponents of 2, The Quarterly Journal of Pure and Applied Mathematics, Vol. 37 (1906), pp. 122-145.

Crossrefs

Supersequence of A014752.

Programs

  • Magma
    [p: p in PrimesUpTo(1709) | #Factorization(p-1) ge 2 and Modexp(2, Truncate((p-1)/Factorization(p-1)[2][1]), p) eq 1];
    
  • PARI
    forprime(p=2, 1709, v=Vec(factor(p-1))[1]; if(#v>1, t=0; e=v[2]; x=floor(p^(1/e))+1; until(x==p||t==2, if(Mod(x, p)^e==2, t++); x++); if(t==2, print1(p, ", "))));
    
  • PARI
    isok(p) = my(v=Vec(factor(p-1))[1]); isprime(p) && #v>1 && Mod(2, p)^((p-1)/v[2])==1;