A364194 a(n) = Sum_{k=1..n} k^3*sigma(k), where sigma is A000203.
1, 25, 133, 581, 1331, 3923, 6667, 14347, 23824, 41824, 57796, 106180, 136938, 202794, 283794, 410770, 499204, 726652, 863832, 1199832, 1496184, 1879512, 2171520, 3000960, 3485335, 4223527, 5010847, 6240159, 6971829, 8915829, 9869141, 11933525, 13658501
Offset: 1
Links
- Wikipedia, Faulhaber's formula.
Crossrefs
Programs
-
Mathematica
Accumulate[Table[n^3*DivisorSigma[1, n], {n, 1, 33}]] (* Amiram Eldar, Oct 20 2023 *)
-
PARI
f(n, m) = (subst(bernpol(m+1, x), x, n+1)-subst(bernpol(m+1, x), x, 0))/(m+1); a(n, s=3, t=1) = sum(k=1, n, k^(s+t)*f(n\k, s));
-
Python
def A364194(n): return sum((k**2*(m:=n//k)*(m+1)>>1)**2 for k in range(1,n+1)) # Chai Wah Wu, Oct 20 2023
-
Python
from math import isqrt def A364194(n): return ((((s:=isqrt(n))*(s + 1))**3*(2*s+1)*(1-3*s*(s+1))>>1) + sum((q:=n//k)*(q+1)*k**3*(q*(15*k+q*(15*k+12*q+18)+2)-2) for k in range(1,s+1)))//60 # Chai Wah Wu, Oct 21 2023
Formula
a(n) = Sum_{k=1..n} k^4 * A000537(floor(n/k)).
a(n) ~ (zeta(2)/5) * n^5. - Amiram Eldar, Oct 20 2023