cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A364255 a(n) = gcd(n, A163511(n)).

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 6, 1, 8, 9, 2, 1, 12, 1, 2, 1, 16, 1, 18, 1, 4, 3, 2, 1, 24, 5, 2, 1, 4, 1, 2, 1, 32, 3, 2, 5, 36, 1, 2, 1, 8, 1, 6, 1, 4, 3, 2, 1, 48, 1, 10, 1, 4, 1, 2, 11, 8, 3, 2, 1, 4, 1, 2, 1, 64, 1, 6, 1, 4, 3, 10, 1, 72, 1, 2, 5, 4, 7, 2, 1, 16, 27, 2, 1, 12, 5, 2, 1, 8, 1, 6, 1, 4, 3, 2, 1, 96, 1, 2, 1, 20, 1, 2, 1, 8, 105
Offset: 0

Views

Author

Antti Karttunen, Jul 16 2023

Keywords

Crossrefs

Cf. A163511, A364257 (Dirichlet inverse), A364258, A364491, A364492, A364493.

Programs

  • PARI
    A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A364255(n) = gcd(n, A163511(n)); \\ Antti Karttunen, Sep 01 2023
  • Python
    from math import gcd
    from sympy import nextprime
    def A364255(n):
        c, p, k = 1, 1, n
        while k:
            c *= (p:=nextprime(p))**(s:=(~k&k-1).bit_length())
            k >>= s+1
        return gcd(c*p,n) # Chai Wah Wu, Jul 25 2023
    

Formula

From Antti Karttunen, Sep 01 2023: (Start)
a(n) = gcd(n, A364258(n)) = gcd(A163511(n), A364258(n)).
a(n) = n / A364491(n) = A163511(n)/ A364492(n).
(End)

A366373 a(n) = gcd(n, A332214(n)), where A332214 is the Mersenne-prime fixing variant of permutation A163511.

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 6, 7, 8, 9, 2, 1, 12, 1, 14, 5, 16, 1, 18, 1, 4, 21, 2, 1, 24, 1, 2, 1, 28, 1, 10, 31, 32, 3, 2, 7, 36, 1, 2, 1, 8, 1, 42, 1, 4, 15, 2, 1, 48, 7, 2, 1, 4, 1, 2, 5, 56, 3, 2, 1, 20, 1, 62, 1, 64, 1, 6, 1, 4, 3, 14, 1, 72, 1, 2, 25, 4, 1, 2, 1, 16, 27, 2, 1, 84, 5, 2, 1, 8, 1, 30, 7, 4, 93, 2, 1, 96
Offset: 0

Views

Author

Antti Karttunen, Oct 08 2023

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(n, A366372(n)) = gcd(A332214(n), A366372(n)).
For n >= 1, a(n) = n / A366374(n)
a(n) = A332214(n) / A366375(n).

A364256 a(n) = gcd(n, A243071(n)).

Original entry on oeis.org

1, 1, 3, 2, 1, 6, 1, 4, 1, 2, 1, 12, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 24, 1, 2, 9, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 43, 4, 5, 2, 1, 48, 1, 2, 1, 4, 1, 18, 1, 8, 1, 2, 1, 4, 1, 2, 3, 32, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 3, 4, 11, 2, 1, 16, 1, 2, 1, 4, 1, 86, 1, 8, 1, 10, 7, 4, 1, 2, 1, 96, 1, 2, 11, 4
Offset: 1

Views

Author

Antti Karttunen, Jul 17 2023

Keywords

Comments

Primes p such that a(p) = p are those that occur as factors of (2^A000720(p))-1: 3, 43, 49477. Are there any more of them?

Crossrefs

Cf. A243071.
Cf. also A364254, A364255.

Programs

  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A243071(n) = if(n<=2, n-1, if(!(n%2), 2*A243071(n/2), 1+(2*A243071(A064989(n)))));
    A364256(n) = gcd(n, A243071(n));

A364253 a(n) = n - A332215(n).

Original entry on oeis.org

1, 1, 0, 2, -10, 0, 0, 4, 4, -20, -52, 0, -242, 0, -14, 8, -494, 8, -1004, -40, 8, -104, -2024, 0, 2, -484, 18, 0, -4066, -28, 0, 16, -92, -988, 8, 16, -16346, -2008, -470, -80, -32726, 16, -65492, -208, -12, -4048, -262096, 0, 38, 4, -970, -968, -1048522, 36, -64, 0, -1988, -8132, -2097092, -56, -4194242, 0, 38, 32
Offset: 1

Views

Author

Antti Karttunen, Jul 16 2023

Keywords

Crossrefs

Cf. A332215, A335431 (conjectured positions of 0's), A364254.

Programs

Formula

For n > 1, a(2*n) = 2*a(n).
For all n >= 1, a(A335431(n)) = 0.
Showing 1-4 of 4 results.