cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A364255 a(n) = gcd(n, A163511(n)).

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 6, 1, 8, 9, 2, 1, 12, 1, 2, 1, 16, 1, 18, 1, 4, 3, 2, 1, 24, 5, 2, 1, 4, 1, 2, 1, 32, 3, 2, 5, 36, 1, 2, 1, 8, 1, 6, 1, 4, 3, 2, 1, 48, 1, 10, 1, 4, 1, 2, 11, 8, 3, 2, 1, 4, 1, 2, 1, 64, 1, 6, 1, 4, 3, 10, 1, 72, 1, 2, 5, 4, 7, 2, 1, 16, 27, 2, 1, 12, 5, 2, 1, 8, 1, 6, 1, 4, 3, 2, 1, 96, 1, 2, 1, 20, 1, 2, 1, 8, 105
Offset: 0

Views

Author

Antti Karttunen, Jul 16 2023

Keywords

Crossrefs

Cf. A163511, A364257 (Dirichlet inverse), A364258, A364491, A364492, A364493.

Programs

  • PARI
    A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A364255(n) = gcd(n, A163511(n)); \\ Antti Karttunen, Sep 01 2023
  • Python
    from math import gcd
    from sympy import nextprime
    def A364255(n):
        c, p, k = 1, 1, n
        while k:
            c *= (p:=nextprime(p))**(s:=(~k&k-1).bit_length())
            k >>= s+1
        return gcd(c*p,n) # Chai Wah Wu, Jul 25 2023
    

Formula

From Antti Karttunen, Sep 01 2023: (Start)
a(n) = gcd(n, A364258(n)) = gcd(A163511(n), A364258(n)).
a(n) = n / A364491(n) = A163511(n)/ A364492(n).
(End)

A364957 Dirichlet inverse of A365463.

Original entry on oeis.org

1, -2, -3, 3, -1, 6, -1, -12, 0, 3, -1, -9, -1, 2, 3, 35, -1, 0, -1, -10, 3, 3, -1, 36, -24, 2, 0, -3, -1, -9, -1, -82, 3, 2, -5, 0, -1, 2, 3, 37, -1, -6, -1, -10, 0, 3, -1, -105, 0, 46, 3, -6, -1, 0, -9, 18, 3, 3, -1, 30, -1, 2, 0, 226, -3, -9, -1, -6, 3, 12, -1, 0, -1, 2, 72, -3, 1, -6, -1, -127, 0, 3, -1, 9, -3, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Sep 16 2023

Keywords

Crossrefs

Cf. also A364257.

Programs

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA365463(n/d) * a(d).

A366258 Dirichlet inverse of A366283, where A366283(n) = gcd(n, A366275(n)).

Original entry on oeis.org

1, -2, -3, 0, -1, 6, -1, 0, 0, 2, -1, 0, -1, 2, 5, 0, -1, 0, -1, 0, 3, 2, -1, 0, -24, 2, 26, 0, -1, -10, -1, 0, 3, 2, -3, 0, -1, 2, 3, 0, -1, -6, -1, 0, -6, 2, -1, 0, 0, 48, 5, 0, -1, -52, -53, 0, 5, 2, -1, 0, -1, 2, 8, 0, 1, -6, -1, 0, 3, 6, -1, 0, -1, 2, 128, 0, -5, -6, -1, 0, -78, 2, -1, 0, -3, 2, 3, 0, -1, 12
Offset: 1

Views

Author

Antti Karttunen, Oct 07 2023

Keywords

Crossrefs

Cf. A366275, A366283, A366259 (rgs-transform).
Cf. also A364257.

Programs

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA366283(n/d) * a(d).
Showing 1-3 of 3 results.