A364281 Number of permutations of [n] with distinct cycle lengths such that each cycle contains exactly one cycle length as an element.
1, 1, 1, 4, 10, 48, 252, 1584, 10800, 93600, 823680, 8588160, 93381120, 1158312960, 14805504000, 215028172800, 3159494553600, 51973589606400, 873152856576000, 16058241239040000, 300754643245056000, 6159522883497984000, 127439374149255168000
Offset: 0
Keywords
Examples
a(3) = 4: (123), (132), (13)(2), (1)(23). a(4) = 10: (1234), (1243), (1324), (1342), (1423), (1432), (124)(3), (142)(3), (1)(234), (1)(243).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
- Wikipedia, Permutation
Programs
-
Maple
a:= proc(m) option remember; local b; b:= proc(n, i, p) option remember; `if`(i*(i+1)/2
-
Mathematica
a[m_] := a[m] = Module[{b}, b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0, If[n == 0, p!*(m - p)!, b[n, i - 1, p] + b[n - i, Min[n - i, i - 1], p - 1]]]; b[m, m, m]]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Oct 21 2023, after Alois P. Heinz *)
Formula
Conjecture: a(n) ~ exp(1) * (n-1)!. - Vaclav Kotesovec, May 23 2025