cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A364258 a(n) = A163511(n) - n.

Original entry on oeis.org

1, 1, 2, 0, 4, 4, 0, -2, 8, 18, 8, 14, 0, 2, -4, -8, 16, 64, 36, 106, 16, 54, 28, 26, 0, 20, 4, 8, -8, -8, -16, -20, 32, 210, 128, 590, 72, 338, 212, 304, 32, 184, 108, 202, 56, 102, 52, 74, 0, 86, 40, 124, 8, 52, 16, 22, -16, 6, -16, -4, -32, -28, -40, -50, 64, 664, 420, 3058, 256, 1806, 1180, 2330, 144, 1052, 676
Offset: 0

Views

Author

Antti Karttunen, Jul 25 2023

Keywords

Comments

Compare also to the scatter plot of A364294.

Crossrefs

Cf. A007283, A163511, A364255 [= gcd(n,a(n))], A364287 (positions of negative terms), A364292 (of terms <= 0), A364288, A364294 [= -a(A364293(n))].

Programs

  • Mathematica
    f[n_] := Reverse@ Map[Ceiling[(Length@ # - 1)/2] &, DeleteCases[Split@ Join[Riffle[IntegerDigits[n, 2], 0], {0}], {k__} /; k == 1]]; {1}~Join~Table[-n + Function[t, Prime[t] Product[Prime[m]^(f[n][[m]]), {m, t}] ][DigitCount[n, 2, 1]], {n, 120}] (* Michael De Vlieger, Jul 25 2023 *)
  • Python
    from sympy import nextprime
    def A364258(n):
        c, p, k = 1, 1, n
        while k:
            c *= (p:=nextprime(p))**(s:=(~k&k-1).bit_length())
            k >>= s+1
        return c*p-n # Chai Wah Wu, Jul 25 2023

Formula

a(n) = A364288(A163511(n)).
For n >= 1, a(2*n) = 2*a(n).
For n >= 0, a(A007283(n)) = 0.

A364292 Numbers k such that A163511(k) <= k.

Original entry on oeis.org

3, 6, 7, 12, 14, 15, 24, 28, 29, 30, 31, 48, 56, 58, 59, 60, 61, 62, 63, 96, 112, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 192, 223, 224, 232, 236, 238, 239, 240, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 383, 384, 446, 447, 448, 464, 472, 476, 478, 479, 480, 484, 488, 490, 492
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2023

Keywords

Crossrefs

Positions of nonpositive terms in A364258.
Cf. A163511.
Subsequences: A007283, A364287, A364293 (odd terms).
Cf. also A364289.

Programs

  • Mathematica
    f[n_] := Reverse@ Map[Ceiling[(Length@ # - 1)/2] &, DeleteCases[Split@ Join[Riffle[IntegerDigits[n, 2], 0], {0}], {k__} /; k == 1]]; Select[Range[2, 500], Function[t, Prime[t] Product[Prime[m]^(f[#][[m]]), {m, t}]][DigitCount[#, 2, 1]] <= # &] (* Michael De Vlieger, Jul 25 2023 *)

A364294 Difference k - A163511(k) computed for those odd numbers k for which the difference is nonnegative.

Original entry on oeis.org

0, 2, 8, 8, 20, 4, 28, 50, 28, 22, 58, 86, 110, 2, 52, 50, 128, 132, 166, 202, 236, 22, 124, 232, 136, 286, 146, 74, 246, 370, 352, 412, 452, 488, 238, 458, 216, 568, 362, 692, 68, 236, 338, 606, 754, 550, 536, 728, 854, 846, 904, 952, 994, 694, 478, 1124, 744, 1368, 96, 484, 1084, 1490, 10, 236, 812, 746, 1254
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2023

Keywords

Comments

Conjecture: a(1) is the only zero in this sequence, which is equal to the claim that A007283 gives all fixed points of the map n -> A163511(n).
Question: What can be said about the occurrence of small values later in the sequence? Does the sequence admit any lower bound that is monotonic, and keeps on growing, thus never setting to any constant value? See the scatter plot.

Crossrefs

Programs

  • Mathematica
    f[n_] := Reverse@ Map[Ceiling[(Length@ # - 1)/2] &, DeleteCases[Split@ Join[Riffle[IntegerDigits[n, 2], 0], {0}], {k__} /; k == 1]]; Subtract @@ # & /@ Select[Array[{2 # - 1, Function[t, Prime[t] Product[Prime[m]^(f[2 # - 1][[m]]), {m, t}]][DigitCount[2 # - 1, 2, 1]]} &, 1024], #1 >= #2 & @@ # &] (* Michael De Vlieger, Jul 25 2023 *)

Formula

a(n) = -A364258(A364293(n)).

A364543 Odd numbers k for which A005940(k) <= k.

Original entry on oeis.org

1, 3, 5, 9, 17, 33, 35, 65, 67, 69, 129, 131, 133, 135, 137, 257, 259, 261, 263, 265, 267, 273, 289, 385, 513, 515, 517, 519, 521, 523, 525, 527, 529, 531, 545, 577, 641, 769, 1025, 1027, 1029, 1031, 1033, 1035, 1037, 1039, 1041, 1043, 1045, 1047, 1057, 1059, 1089, 1091, 1153, 1281, 1537, 2049, 2051, 2053, 2055
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2023

Keywords

Crossrefs

Odd terms of A364541.
Cf. A005940, A364563 [= -A364499(a(n))].
Subsequences: A364547, A364573.
Cf. also A364293.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    isA364543(n) = ((n%2)&&(A005940(n)<=n));
Showing 1-4 of 4 results.