A364299 a(n) = [x^n] 1/(1 + x) * Legendre_P(n, (1 - x)/(1 + x))^(-1) for n >= 0.
1, 1, 19, 721, 49251, 5370751, 859748023, 190320431953, 55743765411043, 20884452115700251, 9745388924112505269, 5543574376457462884111, 3776677001062829977964007, 3036161801705682492174749691, 2844274879825369072829081331519
Offset: 0
Programs
-
Maple
a(n) := coeff(series( 1/(1 + x) * LegendreP(n, (1 - x)/(1 + x))^(-1), x, 21), x, n): seq(a(n), n = 0..20);
Formula
Conjectures:
1) 13*a(p) - 7*a(p-1) == 6 (mod p^5) for all primes p >= 3 (checked up to p = 101).
2) for r >= 2, 13*a(p^r) - 7*a(p^r - 1) == 13*a(p^(r-1)) - 7*a(p^(r-1) - 1) (mod p^(3*r+3)) for all primes p >= 5.
3) a(p)^13 == a(p-1)^7 (mod p^5) for all primes p >= 3 (checked up to p = 101).
4) for r >= 2, a(p^r)^13 * a(p^(r-1) - 1)^7 == a(p^(r-1))^13 * a(p^r - 1)^7 (mod p^(3*r+3)) for all primes p >= 5.
Comments