A364301 a(n) = [x^n] 1/(1 + x) * Legendre_P(n, (1 - x)/(1 + x))^(-n) for n >= 0.
1, 1, 73, 10805, 3100001, 1479318759, 1062573281785, 1073267499046525, 1451614640844881665, 2534009926232394596267, 5548110762587726241026801, 14890865228866506199602545427, 48084585660733078332263158771313, 183923731031112887024255817209295155, 822427361894711201025101782425695273529
Offset: 0
Programs
-
Maple
a(n) := coeff(series( 1/(1 + x) * LegendreP(n, (1 - x)/(1 + x))^(-n), x, 21), x, n): seq(a(n), n = 0..20);
Formula
Conjectures:
1) a(p) == 2*p - 1 (mod p^4) for all primes p >= 5 (checked up to p = 101).
More generally, the supercongruence a(p^k) == 2*p^k - 1 (mod p^(3+k)) may hold for all primes p >= 5 and all k >= 1.
2) a(p-1) == 1 (mod p^3) for all primes p except p = 3 (checked up to p = 101).
More generally, the supercongruence a(p^k - p^(k-1)) == 1 (mod p^(2+k)) may hold for all primes p >= 5 and all k >= 1.
Comments