A364303 Square array read by ascending antidiagonals: T(n,k) = [x^k] (1 - x)^(2*k) * Legendre_P(n*k, (1 + x)/(1 - x)) for n, k >= 0.
1, 1, -2, 1, 0, 6, 1, 4, -6, -20, 1, 10, 36, 0, 70, 1, 18, 300, 400, 90, -252, 1, 28, 1050, 11440, 4900, 0, 924, 1, 40, 2646, 77616, 485100, 63504, -1680, -3432, 1, 54, 5544, 316540, 6370650, 21841260, 853776, 0, 12870, 1, 70, 10296, 972400, 42031990, 554822268, 1022041020, 11778624, 34650, -48620
Offset: 0
Examples
Square array begins: n\k| 0 1 2 3 4 5 - + - - - - - - - - - - - - - - - - - - - - - - - - - 0 | 1 -2 6 -20 70 -252 ... (-1)^k*A000984(k) 1 | 1 0 -6 0 90 0 ... A245086 2 | 1 4 36 400 4900 63504 ... A002894 3 | 1 10 300 11440 485100 21841260 ... A275652 4 | 1 18 1050 77616 6370650 554822268 ... A275653 5 | 1 28 2646 316540 42031990 5921058528 ... A275654 6 | 1 40 5544 972400 189290920 39089615040 ... A275655 7 | 1 54 10296 2484000 665091000 188907932304 ... A364304 8 | 1 70 17550 5567380 1960044750 732012601320 ... A364305
Links
- R. Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862--2012), arXiv:1111.3057 [math.NT], 2011.
- Wikipedia, Dixon's identity
Crossrefs
Programs
-
Maple
T(n,k) := coeff(series( (1 - x)^(2*k) * LegendreP(n*k, (1 + x)/(1 - x)), x, 11), x, k): # display as a square array seq(print(seq(T(n, k), k = 0..10)), n = 0..10); # display as a sequence seq(seq(T(n-k, k), k = 0..n), n = 0..10);
Formula
T(n,k) = Sum_{i = 0..k} binomial(n*k, k-i)^2 * binomial((n-2)*k+i-1, i).
For n >= 2, T(n,k) = binomial((n-1)*k, k)^2 * hypergeom([a, b, b], [1 + a - b, 1 + a - b], 1), where a = (n - 3)*k and b = -k.
For n >= 3, T(n,k) = ((n - 1)*k)! * ((n + 1)*k/2)! * ((n - 3)*k/2)! / ( ((n - 1)*k/2)!^2 * k!^2 * ((n - 3)*k)! ) by Dixon's 3F2 summation theorem, where fractional factorials are defined in terms of the gamma function.
Comments