cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364310 Number T(n,k) of partitions of n into k parts where each block of part i with multiplicity j is marked with a word of length i*j over an n-ary alphabet whose letters appear in alphabetical order and all n letters occur exactly once in the partition; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 5, 6, 1, 0, 1, 15, 15, 10, 1, 0, 1, 22, 76, 35, 15, 1, 0, 1, 63, 168, 252, 70, 21, 1, 0, 1, 93, 574, 785, 658, 126, 28, 1, 0, 1, 255, 2188, 3066, 2739, 1470, 210, 36, 1, 0, 1, 386, 5490, 18235, 12181, 7857, 2940, 330, 45, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 18 2023

Keywords

Examples

			T(4,1) = 1: 4abcd.
T(4,2) = 5: 3abc1d, 3abd1c, 3acd1b, 3bcd1a, 22abcd.
T(4,3) = 6: 2ab11cd, 2ac11bd, 2ad11bc, 2bc11ad, 2bd11ac, 2cd11ab.
T(4,4) = 1: 1111abcd.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,   1;
  0, 1,   3,    1;
  0, 1,   5,    6,    1;
  0, 1,  15,   15,   10,    1;
  0, 1,  22,   76,   35,   15,    1;
  0, 1,  63,  168,  252,   70,   21,   1;
  0, 1,  93,  574,  785,  658,  126,  28,  1;
  0, 1, 255, 2188, 3066, 2739, 1470, 210, 36, 1;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A057427.
Row sums give A178682.
T(n,n) gives A000012.
T(n+1,n) gives A000217.
T(n+2,n) gives A000332(n+3).
Cf. A364285.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*x^j*binomial(n, i*j), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0,
       Sum[b[n - i*j, i - 1]*x^j*Binomial[n, i*j], {j, 0, n/i}]]]];
    T[n_] := CoefficientList[b[n, n], x];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 18 2023, after Alois P. Heinz *)