A364322 Number of partitions of 2n with largest part n where each block of part i with multiplicity j is marked with a word of length i*j over a (2n)-ary alphabet whose letters appear in alphabetical order and all 2n letters occur exactly once in the partition.
1, 1, 7, 81, 841, 10333, 137677, 1973401, 29150551, 484498301, 8769443541, 167200081777, 3311785261513, 66867027890601, 1437872937193801, 33031740883673521, 796918495251727081, 19807865344255857661, 501642119664087055501, 12828972405814319046601
Offset: 0
Keywords
Examples
a(2) = 7: 2ab11cd, 2ac11bd, 2ad11bc, 2bc11ad, 2bd11ac, 2cd11ab, 22abcd.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..503
Crossrefs
Cf. A364285.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*binomial(n, i*j), j=0..n/i))) end: a:= n-> b(2*n, n)-`if`(n=0, 0, b(2*n, n-1)): seq(a(n), n=0..23);
Formula
a(n) = A364285(2n,n).
Comments