cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364322 Number of partitions of 2n with largest part n where each block of part i with multiplicity j is marked with a word of length i*j over a (2n)-ary alphabet whose letters appear in alphabetical order and all 2n letters occur exactly once in the partition.

Original entry on oeis.org

1, 1, 7, 81, 841, 10333, 137677, 1973401, 29150551, 484498301, 8769443541, 167200081777, 3311785261513, 66867027890601, 1437872937193801, 33031740883673521, 796918495251727081, 19807865344255857661, 501642119664087055501, 12828972405814319046601
Offset: 0

Views

Author

Alois P. Heinz, Jul 18 2023

Keywords

Comments

a(n) is also the number of endofunctions on [2n] such that n is the range maximum and the number of elements that are mapped to m is divisible by m. a(2) = 7: (2211), (2121), (2112), (1221), (1212), (1122), (2222).
All terms are odd.

Examples

			a(2) = 7: 2ab11cd, 2ac11bd, 2ad11bc, 2bc11ad, 2bd11ac, 2cd11ab, 22abcd.
		

Crossrefs

Cf. A364285.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*binomial(n, i*j), j=0..n/i)))
        end:
    a:= n-> b(2*n, n)-`if`(n=0, 0, b(2*n, n-1)):
    seq(a(n), n=0..23);

Formula

a(n) = A364285(2n,n).