cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A364344 Number of endofunctions on [n] such that the number of elements that are mapped to i is a multiple or a divisor of i.

Original entry on oeis.org

1, 1, 4, 20, 177, 1462, 21919, 254802, 4816788, 82401465, 1929926410, 35256890748, 1152938630784, 24977973856643, 823036511854847, 24332827884557037, 954801492779273665, 27023410818058291822, 1309814517293654535339, 41375530521928893861920
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2023

Keywords

Examples

			a(0) = 1: ().
a(1) = 1: (1).
a(2) = 2: (11), (12), (21), (22).
a(3) = 20 (111), (112), (113), (121), (122), (123), (131), (132), (211), (212), (213), (221), (223), (231), (232), (311), (312), (321), (322), (333).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*binomial(n, i*j), j=0..n/i)+add(
         `if`(d>n or d=i, 0, b(n-d, i-1)*binomial(n, d)),
              d=numtheory[divisors](i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..19);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i - 1]* Binomial[n, i*j], {j, 0, n/i}]+Sum[If[d>n || d == i, 0, b[n - d, i - 1]* Binomial[n, d]], {d, Divisors[i]}]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Oct 27 2023, after Alois P. Heinz *)

A364328 Number of endofunctions on [n] such that the number of elements that are mapped to i is either 0 or a prime divisor of i.

Original entry on oeis.org

1, 0, 1, 1, 6, 21, 110, 904, 4312, 74400, 731412, 5600761, 128196024, 792051157, 18696610816, 264267572121, 7136433698464, 57948743342529, 2228312959187256, 22463157401776612, 681974906329502904, 15395459281239915282, 463374873030990445252, 6091833036158810701465
Offset: 0

Views

Author

Alois P. Heinz, Jul 18 2023

Keywords

Examples

			a(0) = 1: ().
a(2) = 1: (22).
a(3) = 1: (333).
a(4) = 6: (4422), (4242), (4224), (2442), (2424), (2244).
a(5) = 21: (55555), (44333), (43433), (43343), (43334), (34433), (34343), (34334), (33443), (33434), (33344), (33322), (33232), (33223), (32332), (32323), (32233), (23332), (23323), (23233), (22333).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+add(
         `if`(d>n, 0, b(n-d, i-1)*binomial(n, d)), d=numtheory[factorset](i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..23);
Showing 1-2 of 2 results.