A364344 Number of endofunctions on [n] such that the number of elements that are mapped to i is a multiple or a divisor of i.
1, 1, 4, 20, 177, 1462, 21919, 254802, 4816788, 82401465, 1929926410, 35256890748, 1152938630784, 24977973856643, 823036511854847, 24332827884557037, 954801492779273665, 27023410818058291822, 1309814517293654535339, 41375530521928893861920
Offset: 0
Keywords
Examples
a(0) = 1: (). a(1) = 1: (1). a(2) = 2: (11), (12), (21), (22). a(3) = 20 (111), (112), (113), (121), (122), (123), (131), (132), (211), (212), (213), (221), (223), (231), (232), (311), (312), (321), (322), (333).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*binomial(n, i*j), j=0..n/i)+add( `if`(d>n or d=i, 0, b(n-d, i-1)*binomial(n, d)), d=numtheory[divisors](i)))) end: a:= n-> b(n$2): seq(a(n), n=0..19);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i - 1]* Binomial[n, i*j], {j, 0, n/i}]+Sum[If[d>n || d == i, 0, b[n - d, i - 1]* Binomial[n, d]], {d, Divisors[i]}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Oct 27 2023, after Alois P. Heinz *)