A364345 Number of integer partitions of n without any three parts (a,b,c) (repeats allowed) satisfying a + b = c. A variation of sum-free partitions.
1, 1, 2, 2, 4, 5, 7, 10, 13, 16, 21, 27, 34, 43, 54, 67, 83, 102, 122, 151, 182, 218, 258, 313, 366, 443, 513, 611, 713, 844, 975, 1149, 1325, 1554, 1780, 2079, 2381, 2761, 3145, 3647, 4134, 4767, 5408, 6200, 7014, 8035, 9048, 10320, 11639, 13207, 14836, 16850
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 13 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (111) (22) (32) (33) (43) (44) (31) (41) (51) (52) (53) (1111) (311) (222) (61) (62) (11111) (411) (322) (71) (3111) (331) (332) (111111) (511) (611) (4111) (2222) (31111) (3311) (1111111) (5111) (41111) (311111) (11111111)
Crossrefs
The strict case is A364346.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Select[Tuples[Union[#],3],#[[1]]+#[[2]]==#[[3]]&]=={}&]],{n,0,30}]