A364346 Number of strict integer partitions of n such that there is no ordered triple of parts (a,b,c) (repeats allowed) satisfying a + b = c. A variation of sum-free strict partitions.
1, 1, 1, 1, 2, 3, 2, 4, 4, 5, 5, 8, 9, 11, 11, 16, 16, 20, 20, 25, 30, 34, 38, 42, 50, 58, 64, 73, 80, 90, 105, 114, 128, 148, 158, 180, 201, 220, 241, 277, 306, 333, 366, 404, 447, 497, 544, 592, 662, 708, 797, 861, 954, 1020, 1131, 1226, 1352, 1456, 1600
Offset: 0
Keywords
Examples
The a(1) = 1 through a(14) = 11 partitions (A..E = 10..14): 1 2 3 4 5 6 7 8 9 A B C D E 31 32 51 43 53 54 64 65 75 76 86 41 52 62 72 73 74 93 85 95 61 71 81 82 83 A2 94 A4 531 91 92 B1 A3 B3 A1 543 B2 C2 641 732 C1 D1 731 741 652 851 831 751 932 832 941 931 A31
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Select[Tuples[#,3],#[[1]]+#[[2]]==#[[3]]&]=={}&]],{n,0,15}]
-
Python
from collections import Counter from itertools import combinations_with_replacement from sympy.utilities.iterables import partitions def A364346(n): return sum(1 for p in partitions(n) if max(p.values(),default=1)==1 and not any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()),3))) # Chai Wah Wu, Sep 20 2023