A364348 Numbers with two possibly equal divisors prime(a) and prime(b) such that prime(a+b) is also a divisor.
6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 70, 72, 78, 84, 90, 96, 102, 105, 108, 114, 120, 126, 130, 132, 133, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 195, 198, 204, 210, 216, 222, 228, 231, 234, 240, 246, 252
Offset: 1
Keywords
Examples
We have 6 because prime(1) and prime(1) are both divisors of 6, and prime(1+1) is also. The terms together with their prime indices begin: 6: {1,2} 12: {1,1,2} 18: {1,2,2} 21: {2,4} 24: {1,1,1,2} 30: {1,2,3} 36: {1,1,2,2} 42: {1,2,4} 48: {1,1,1,1,2} 54: {1,2,2,2} 60: {1,1,2,3} 63: {2,2,4} 65: {3,6} 66: {1,2,5} 70: {1,3,4} 72: {1,1,1,2,2}
Crossrefs
A001222 counts prime indices.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],Intersection[prix[#],Total/@Tuples[prix[#],2]]!={}&]
Comments