cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364389 Number of divisors of n of the form 5*k+2 that are at most sqrt(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 0, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Count[Divisors[n], _?(# <= Sqrt[n] && MemberQ[{2}, Mod[#, 5]] &)], {n, 100}]
    nmax = 100; CoefficientList[Series[Sum[x^(5 k + 2)^2/(1 - x^(5 k + 2)), {k, 0, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=0} x^(5*k+2)^2 / (1 - x^(5*k+2)).