cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364434 a(1) = 12; for n >= 2, a(n) = least positive integer of the form prime(m)*prime(n-m)*prime(n) with m >= 1.

Original entry on oeis.org

12, 12, 30, 63, 154, 273, 442, 646, 874, 1334, 1798, 2294, 3034, 3526, 4042, 4982, 6254, 7198, 8174, 9514, 10366, 11534, 13114, 14774, 17266, 19594, 20806, 22042, 23326, 24634, 28702, 33274, 35894, 38086, 41422, 44998, 47414, 51182, 54442, 57782, 61934, 64798, 69142
Offset: 1

Views

Author

David A. Corneth, Aug 31 2023

Keywords

Comments

Also a(n) is the least positive integer in A364462 that is divisible by prime(n).
This sequence is strictly increasing for n > 1.
Proof by contradiction:
Suppose a(n) >= a(n+1) = prime(n + 1) * prime(m) * prime(n + 1 - m) for some 1 <= m < n + 1. Then, as prime(n + 1) > prime(n) and prime(n + 1 - m) > prime(n - m) we have a(n) >= a(n+1) = prime(n + 1) * prime(m) * prime(n + 1 - m) > prime(n) * prime(m) * prime(n - m) >= a(n). A contradiction.
We contradicted a(n) >= a(n + 1) for n > 1. Therefore for n > 1 we have a(n) < a(n + 1). a(1) = a(2) because prime(0) does not exist.
This sequence could help in finding terms for A365280. Once an upper bound is chosen for a search, one could find the largest prime factor that could part of the product prime(m)*prime(t)*prime(m+t) <= u. This way for any prime p > prime(m+t) we do not need to compute primepi(p) saving a bunch of time in checking if a term is in A364462.

Examples

			For n = 2, we take m=1 and get a(2) = prime(1)*prime(1)*prime(2) = 12.
		

Crossrefs

Programs

  • PARI
    first(n) = {my(pr = primes(n), res = vector(n, i, oo)); res[1] = 12; for(i = 2, n, for(j = 1, i\2, res[i] = min(res[i], pr[j]*pr[i-j])); res[i]*=pr[i]); res} \\ David A. Corneth, Aug 31 2023