A364460 Number of tilings of a 3 X n rectangle using dominoes and trominoes (of any shape).
1, 1, 6, 30, 145, 733, 3540, 17300, 84479, 411963, 2011408, 9816506, 47911847, 233851991, 1141365064, 5570761346, 27189615925, 132706261547, 647709321582, 3161321546320, 15429691961077, 75308819284819, 367565220881250, 1794002281279416, 8756117243124305, 42736617464745197
Offset: 0
Examples
a(2) = 6: .___. .___. .___. .___. .___. .___. | | | |___| | | | |___| | ._| |_. | | | | |___| |_|_| | | | |_| | | |_| |_|_| |___| |___| |_|_| |___| |___| .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1453
- Wikipedia, Domino (mathematics)
- Wikipedia, Tromino
- Index entries for linear recurrences with constant coefficients, signature (3,6,13,0,53,18,69,48,35,-125,-76,-24,38,8,18,1,-3,-1).
Formula
G.f.: -(x^15 +2*x^14 +4*x^13 -5*x^12 -9*x^11 -18*x^10 +16*x^9 +5*x^8 +8*x^7 -10*x^6 +13*x^5 -6*x^4 +7*x^3 +3*x^2 +2*x -1) / (x^18 +3*x^17 -x^16 -18*x^15 -8*x^14 -38*x^13 +24*x^12 +76*x^11 +125*x^10 -35*x^9 -48*x^8 -69*x^7 -18*x^6 -53*x^5 -13*x^3 -6*x^2 -3*x +1).
a(n) mod 2 = A133872(n).