cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364460 Number of tilings of a 3 X n rectangle using dominoes and trominoes (of any shape).

Original entry on oeis.org

1, 1, 6, 30, 145, 733, 3540, 17300, 84479, 411963, 2011408, 9816506, 47911847, 233851991, 1141365064, 5570761346, 27189615925, 132706261547, 647709321582, 3161321546320, 15429691961077, 75308819284819, 367565220881250, 1794002281279416, 8756117243124305, 42736617464745197
Offset: 0

Views

Author

Alois P. Heinz, Jul 25 2023

Keywords

Examples

			a(2) = 6:
  .___.   .___.   .___.   .___.   .___.   .___.
  | | |   |___|   | | |   |___|   | ._|   |_. |
  | | |   |___|   |_|_|   | | |   |_| |   | |_|
  |_|_|   |___|   |___|   |_|_|   |___|   |___|  .
		

Crossrefs

Column k=3 of A364457.
Cf. A133872.

Formula

G.f.: -(x^15 +2*x^14 +4*x^13 -5*x^12 -9*x^11 -18*x^10 +16*x^9 +5*x^8 +8*x^7 -10*x^6 +13*x^5 -6*x^4 +7*x^3 +3*x^2 +2*x -1) / (x^18 +3*x^17 -x^16 -18*x^15 -8*x^14 -38*x^13 +24*x^12 +76*x^11 +125*x^10 -35*x^9 -48*x^8 -69*x^7 -18*x^6 -53*x^5 -13*x^3 -6*x^2 -3*x +1).
a(n) mod 2 = A133872(n).