cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364529 Number of compositions of 2n into n parts where differences between neighboring parts are in {-1,1}.

Original entry on oeis.org

1, 1, 0, 2, 4, 2, 0, 6, 14, 8, 0, 25, 60, 35, 0, 114, 270, 157, 0, 528, 1242, 722, 0, 2481, 5826, 3390, 0, 11816, 27728, 16145, 0, 56841, 133316, 77660, 0, 275485, 645878, 376382, 0, 1343083, 3148000, 1835076, 0, 6579707, 15418652, 8990528, 0, 32363357, 75826214
Offset: 0

Views

Author

Alois P. Heinz, Jul 27 2023

Keywords

Examples

			a(0) = 1: (), the empty composition.
a(1) = 1: [2].
a(3) = 2: [1,2,3], [3,2,1].
a(4) = 4: [1,2,3,2], [2,1,2,3], [2,3,2,1], [3,2,1,2].
a(5) = 2: [2,1,2,3,2], [2,3,2,1,2].
a(7) = 6: [1,2,1,2,3,2,3], [1,2,3,2,1,2,3], [1,2,3,2,3,2,1], [3,2,1,2,1,2,3], [3,2,1,2,3,2,1], [3,2,3,2,1,2,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember;
          `if`(n<1 or i<1 or k<0 or 3/2*k>n, 0,
          `if`(n=i, `if`(k=0, 1, 0),
           add(b(n-i, i+j, k-1), j=[-1, 1])))
        end:
    a:= n-> `if`(n=0, 1, add(b(2*n, j, n-1), j=1..2*n)):
    seq(a(n), n=0..48);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n < 1 || i < 1 || k < 0 || 3/2*k > n, 0,       If[n == i, If[k == 0, 1, 0], Sum[b[n - i, i + j, k - 1], {j, {-1, 1}}]]];
    a[n_] := If[n == 0, 1, Sum[b[2*n, j, n - 1], {j, 1, 2 n}]];
    Table[a[n], {n, 0, 48}] (* Jean-François Alcover, Oct 27 2023, after Alois P. Heinz *)

Formula

a(n) = A309938(2n,n).
a(n) = 0 <=> n in { A016825 }.