A364536 Number of strict integer partitions of n where some part is a difference of two consecutive parts.
0, 0, 0, 1, 0, 0, 2, 1, 2, 2, 5, 4, 6, 6, 9, 11, 16, 17, 23, 25, 30, 38, 48, 55, 65, 78, 92, 106, 127, 146, 176, 205, 230, 277, 315, 366, 421, 483, 552, 640, 727, 829, 950, 1083, 1218, 1408, 1577, 1794, 2017, 2298, 2561, 2919, 3255, 3685, 4116, 4638, 5163
Offset: 0
Keywords
Examples
The a(3) = 1 through a(15) = 11 partitions (A = 10, B = 11, C = 12): 21 . . 42 421 431 63 532 542 84 742 743 A5 321 521 621 541 632 642 841 752 843 631 821 651 A21 761 942 721 5321 921 5431 842 C21 4321 5421 6421 B21 6432 6321 7321 6431 6531 6521 7431 7421 7521 8321 8421 9321 54321
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Intersection[#,-Differences[#]]!={}&]],{n,0,30}]
-
Python
from collections import Counter from sympy.utilities.iterables import partitions def A364536(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), filter(lambda p:max(p[1].values(),default=1)==1,partitions(n,size=True))) if not set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023
Comments