cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A364558 a(n) = A364557(n) - A000010(n), where A364557 is the Möbius transform of A005941, and A000010 (Euler phi) is the Möbius transform of A000027.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 0, -2, 0, 6, 0, 20, 2, -4, 0, 48, -2, 110, 0, -4, 6, 234, 0, -12, 20, -10, 4, 484, -4, 994, 0, -4, 48, -16, -4, 2012, 110, 8, 0, 4056, -4, 8150, 12, -16, 234, 16338, 0, -26, -12, 32, 40, 32716, -10, -24, 8, 92, 484, 65478, -8, 131012, 994, -20, 0, -16, -4, 262078, 96, 212, -16, 524218, -8, 1048504
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Crossrefs

Cf. A000010, A005941, A364557, A364559 (inverse Möbius transform), A364565 (positions of 0's), A364566 (of terms < 0).

Programs

  • PARI
    A364558(n) = (A364557(n)-eulerphi(n));
    
  • Python
    from math import prod
    from sympy import factorint, primepi
    def A364558(n): return (1<1 else 0 # Chai Wah Wu, Jul 29 2023

A364565 Numbers k at which point A364557 (the Möbius transform of A005941) is equal to A000010 (Euler phi function).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 85, 96, 128, 160, 170, 192, 256, 320, 340, 384, 512, 640, 680, 768, 1024, 1280, 1360, 1536, 2048, 2560, 2720, 3072, 4096, 5120, 5440, 6144, 8192, 10240, 10880, 12288, 16384, 20480, 21760, 24576, 32768, 40960, 43520, 49152, 65536, 81920, 87040, 98304, 131072
Offset: 1

Views

Author

Antti Karttunen, Jul 29 2023

Keywords

Comments

Question: Are there any other odd terms apart from 1, 3, 5, 85?

Crossrefs

Positions of 0's in A364558.

Programs

  • PARI
    A364557(n) = if(1==n, 1, 2^(primepi(vecmax(factor(n)[, 1]))+(bigomega(n)-omega(n))-1));
    isA364565(n) = (A364557(n)==eulerphi(n));
Showing 1-2 of 2 results.