cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A364499 a(n) = A005940(n) - n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 0, -2, 0, 4, 0, 12, 4, 12, 0, -6, -4, 2, 0, 14, 8, 22, 0, 24, 24, 48, 8, 96, 24, 50, 0, -20, -12, -2, -8, 18, 4, 24, 0, 36, 28, 62, 16, 130, 44, 88, 0, 72, 48, 96, 48, 192, 96, 170, 16, 286, 192, 316, 48, 564, 100, 180, 0, -48, -40, -28, -24, -4, -4, 28, -16, 18, 36, 90, 8, 198, 48, 110, 0, 62
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

Compare to the scatter plot of A364563.
From Antti Karttunen, Aug 11 2023: (Start)
Can be computed as a certain kind of bitmask transformation of A364568 (analogous to the inverse Möbius transform that is appropriate for A156552-encoding of n).
See A364572, A364573 (and also A364576) for n (apart from those in A029747) where a(n) comes relatively close to the X-axis.
(End)

Examples

			A005940(528577) = 528581, therefore a(528577) = 528581 - 528577 = 4. (See A364576).
A005940(2109697) = 2109629, therefore a(2109697) = 2109629 - 2109697 = -68.
		

Crossrefs

Cf. A005940, A364500 [= gcd(n,a(n))], A364559, A364572, A364573, A364576.
Cf. A029747 (known positions of 0's), A364540 (positions of terms < 0), A364541 (of terms <= 0), A364542 (of terms >= 0), A364563 [= -a(A364543(n))].
Cf. also A364258, A364568.

Programs

  • Mathematica
    nn = 81; Array[Set[a[#], #] &, 2]; Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], Set[a[n], Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]]], {n, 3, nn}]; Array[a[#] - # &, nn] (* Michael De Vlieger, Jul 28 2023 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A364499(n) = (A005940(n)-n);
    
  • PARI
    A364499(n) = { my(m=1,p=2,x=0,z=1); n--; while(n, if(!(n%2), p=nextprime(1+p), x += m; z *= p); n>>=1; m <<=1); (z-x)-1; }; \\ Antti Karttunen, Aug 06 2023
    
  • Python
    from math import prod
    from itertools import accumulate
    from collections import Counter
    from sympy import prime
    def A364499(n): return prod(prime(len(a)+1)**b for a, b in Counter(accumulate(bin(n-1)[2:].split('1')[:0:-1])).items())-n # Chai Wah Wu, Aug 07 2023

Formula

a(n) = -A364559(A005940(n)).
For all n >= 1, a(2*n) = 2*a(n).
For all n >= 1, a(A029747(n)) = 0.

A364543 Odd numbers k for which A005940(k) <= k.

Original entry on oeis.org

1, 3, 5, 9, 17, 33, 35, 65, 67, 69, 129, 131, 133, 135, 137, 257, 259, 261, 263, 265, 267, 273, 289, 385, 513, 515, 517, 519, 521, 523, 525, 527, 529, 531, 545, 577, 641, 769, 1025, 1027, 1029, 1031, 1033, 1035, 1037, 1039, 1041, 1043, 1045, 1047, 1057, 1059, 1089, 1091, 1153, 1281, 1537, 2049, 2051, 2053, 2055
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2023

Keywords

Crossrefs

Odd terms of A364541.
Cf. A005940, A364563 [= -A364499(a(n))].
Subsequences: A364547, A364573.
Cf. also A364293.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    isA364543(n) = ((n%2)&&(A005940(n)<=n));

A364572 Starting from k=7, each subsequent term is the next larger odd k such that A005940(k) >= k and the ratio A005940(k)/k is nearer to 1.0 than for any previous k in the sequence.

Original entry on oeis.org

7, 19, 321, 139307, 262365, 264245, 528577
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2023

Keywords

Examples

			     k   A005940(k)   A005940(k)/k  A005940(k)-k
     7         9      1.285714286        2
    19        21      1.105263158        2
   321       323      1.006230530        2
139307    139965      1.004723381      658
262365    263375      1.003849599     1010
264245    264845      1.002270620      600
528577    528581      1.000007567        4.
		

Crossrefs

Cf. A005940.
Cf. also A364573, A364576.

Programs

  • PARI
    print1(7,", "); r = A005940(7)/7; forstep(n=7,1+(2^26),2,t=A005940(n)/n; if(t>=1 && t < r, r=t;print1(n, ", ")))
Showing 1-3 of 3 results.