cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364605 Number of 6-cycles in the n-Lucas cube graph.

Original entry on oeis.org

0, 0, 0, 0, 5, 44, 147, 464, 1236, 3100, 7293, 16472, 35919, 76216, 158040, 321472, 643229, 1268868, 2472147, 4764120, 9092300, 17202636, 32294277, 60199088, 111498175, 205306192, 376014960, 685273120, 1243205205, 2245893340, 4041415347, 7245914176, 12947137412
Offset: 1

Views

Author

Eric W. Weisstein, Jul 30 2023

Keywords

Crossrefs

Cf. A245961 (number of 4-cycles).

Programs

  • Mathematica
    Join[{0}, Table[(n + 1) (3 (40 n^2 - 145 n + 99) Fibonacci[n] - (40 n^2 - 133 n + 75) LucasL[n])/150, {n, 20}]]
    Join[{0}, LinearRecurrence[{4, -2, -8, 5, 8, -2, -4, -1}, {0, 0, 0, 5, 44, 147, 464, 1236}, 20]]
    CoefficientList[Series[x^4 (5 + 24 x - 19 x^2 + 4 x^3 + x^4)/(-1 + x + x^2)^4, {x, 0, 20}], x]

Formula

a(n) = (n + 1)*(3*(40n^2 - 145*n + 99)*A000045(n) - (40*n^2 - 133*n + 75)*A000032(n))/150.
a(n) = 4*a(n-1) - 2*a(n-2) - 8*a(n-3) + 5*a(n-4) + 8*a(n-5) - 2*a(n-6) - 4*a(n-7) - a(n-8) for n > 1.
G.f.: x^4*(5+24*x-19*x^2+4*x^3+x^4)/(-1+x+x^2)^4.