A363993 a(n) = greatest integer k such that 1/n + 1/(n + 1) +...+ 1/k < 2.
3, 10, 18, 25, 32, 40, 47, 54, 62, 69, 77, 84, 91, 99, 106, 114, 121, 128, 136, 143, 150, 158, 165, 173, 180, 187, 195, 202, 210, 217, 224, 232, 239, 247, 254, 261, 269, 276, 283, 291, 298, 306, 313, 320, 328, 335, 343, 350, 357, 365, 372, 380, 387, 394, 402
Offset: 1
Keywords
Examples
a(2) = 10 because 1/2 + 1/3 +...+ 1/10 < 2 < 1/2 + 1/3 +...+ 1/11.
Programs
-
Mathematica
r = 2; h[n_] := HarmonicNumber[n]; a[n_] : = Select[Range[500], h[#] <= r + h[n - 1] < h[# + 1] & ] Flatten[Table[a[n], {n, 1, 70}]]
-
PARI
a(n) = my(k=0); while (sum(i=n, n+k, 1/i) < 2, k++); n+k-1; \\ Michel Marcus, Sep 08 2023
-
Python
from itertools import accumulate, count from fractions import Fraction def A363993(n): return next(x[0]+n-1 for x in enumerate(accumulate(Fraction(1,k) for k in count(n))) if x[1] >= 2) # Chai Wah Wu, Sep 07 2023
Comments