A364619 Number of 4-cycles in the n-Pell graph.
0, 0, 1, 8, 40, 164, 601, 2048, 6632, 20680, 62633, 185352, 538272, 1538892, 4341905, 12112960, 33464240, 91666192, 249215921, 673049800, 1806888568, 4824913652, 12821690281, 33922774464, 89391291480, 234694621656, 614106591769, 1601882815304, 4166439039664
Offset: 0
Keywords
References
- E. Munarini, Pell Graphs, Disc. Math., 342 (2019), 2415-2428.
Links
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Pell Graph
- Index entries for linear recurrences with constant coefficients, signature (6,-9,-4,9,6,1).
Programs
-
Mathematica
Table[(n (2 n - 3) (-I)^n ChebyshevT[n, I] + (2 n^2 - 2 n + 1) Fibonacci[n, 2])/16, {n, 0, 20}] LinearRecurrence[{6, -9, -4, 9, 6, 1}, {0, 0, 1, 8, 40, 164}, 20] CoefficientList[Series[-x^2 (1 + x)^2/(-1 + 2 x + x^2)^3, {x, 0, 20}], x]