A364625
G.f. satisfies A(x) = 1/(1-x)^3 + x^2*A(x)^2.
Original entry on oeis.org
1, 3, 7, 16, 38, 95, 249, 678, 1901, 5451, 15906, 47066, 140868, 425657, 1296665, 3977684, 12276617, 38094013, 118768915, 371875752, 1168843808, 3686549845, 11664123048, 37011249678, 117750111763, 375529083267, 1200327617200, 3844662925222, 12338289374046
Offset: 0
A364627
G.f. satisfies A(x) = 1/(1-x)^3 + x^2*A(x)^4.
Original entry on oeis.org
1, 3, 7, 22, 97, 469, 2339, 12148, 65295, 358979, 2006977, 11380702, 65311575, 378574425, 2213092750, 13032826536, 77244242937, 460413902079, 2758088752351, 16596379614234, 100269075879881, 607996092039949, 3698873710967989, 22570809986322440
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(n+7*k+2, 9*k+2)*binomial(4*k, k)/(3*k+1));
A369691
G.f. satisfies A(x) = 1/(1-x)^3 + x^3*A(x)^3.
Original entry on oeis.org
1, 3, 6, 11, 24, 66, 196, 576, 1692, 5110, 15933, 50604, 161988, 521700, 1693362, 5541679, 18260055, 60487659, 201272437, 672550158, 2256204327, 7596059333, 25655943417, 86904524289, 295154911774, 1004906765178, 3429178160346, 11726499288028, 40178538608682
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n+3*k+2, n-3*k)*binomial(3*k, k)/(2*k+1));
Showing 1-3 of 3 results.