A364633 a(n) is the smallest nonnegative number k such that prime(n) + k is divisible by n + 1.
0, 0, 3, 3, 1, 1, 7, 8, 7, 4, 5, 2, 1, 2, 1, 15, 13, 15, 13, 13, 15, 13, 13, 11, 7, 7, 9, 9, 11, 11, 1, 1, 33, 1, 31, 34, 33, 32, 33, 32, 31, 34, 29, 32, 33, 36, 29, 22, 23, 26, 27, 26, 29, 24, 23, 22, 21, 24, 23, 24, 27, 22, 13, 14, 17, 18, 9, 8, 3, 6, 7, 6, 3, 2, 1, 2, 1
Offset: 1
Examples
The following table shows the first 10 terms where the fourth column, a(n), plus the third column, prime(n), is divisible by the second column n+1: n n+1 prime(n) a(n) 1 2 2 0 2 3 3 0 3 4 5 3 4 5 7 3 5 6 11 1 6 7 13 1 7 8 17 7 8 9 19 8 9 10 23 7 10 11 29 4
Links
- Andres Cicuttin, Log-log plot
- Andres Cicuttin, Linear plot
Crossrefs
Cf. A068901.
Programs
-
Mathematica
a[n_]:=Module[{k},k=0; While[Mod[Prime[n]+k,n+1]!=0,k++];k]; Table[a[n],{n,1,70}]
-
PARI
a(n) = my(k=0, p=prime(n)); while ((p+k) % (n+1), k++); k; \\ Michel Marcus, Sep 05 2023
-
Python
from sympy import prime def A364633(n): return (n+1)*(prime(n)//(n+1)+1)-prime(n) if n>2 else 0 # Chai Wah Wu, Sep 04 2023
Formula
a(n) = Min_{k | (n+1) divides (prime(n)+k)}.
a(n) = (n+1)*ceiling(prime(n)/(n+1)) - prime(n)
Comments