cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364636 a(n) = ((1 - sqrt(2))^n + (1 + sqrt(2))^n)*n/2.

Original entry on oeis.org

0, 1, 6, 21, 68, 205, 594, 1673, 4616, 12537, 33630, 89309, 235212, 615173, 1599402, 4137105, 10653712, 27327857, 69856182, 178017061, 452390740, 1146776253, 2900399106, 7320463897, 18441561624, 46376946025, 116442406158, 291929022189, 730881930716, 1827523107829
Offset: 0

Views

Author

Peter Luschny, Jul 30 2023

Keywords

Crossrefs

Programs

  • Maple
    A364636 := n -> ((1 - sqrt(2))^n + (1 + sqrt(2))^n)*n / 2:
    seq(simplify(A364636(n)), n = 0..29);
  • PARI
    a(n) = ((1 - quadgen(8))^n + (1 + quadgen(8))^n)*n/2; \\ Michel Marcus, Jul 31 2023

Formula

The sequence can be continued to all ZZ, and a(-n) = -(-1)^n*a(n).
a(n) = [x^n] (x + 2*x^2 - x^3)/(-1 + x*(2 + x))^2.
a(n) = 2*A364553(n) - A093967(n).