A364640 Number of tilings of a 10 X n rectangle using dominoes and trominoes (of any shape).
1, 7, 4832, 2011408, 848550447, 368521437132, 154679198549385, 65871551452359237, 27983642750014402471, 11878705076408687696978, 5046393600526600826576990, 2143056706386201138428021036, 910185960619655990533522509279, 386568166093787098350944666459955
Offset: 0
Keywords
Examples
a(1) = 7: ._. ._. ._. ._. ._. ._. ._. | | | | | | | | | | | | | | |_| | | |_| | | |_| |_| | | | | |_| | | |_| | | | | |_| |_| | | |_| | | | | | | | | | | | | | | |_| |_| |_| |_| |_| |_| | | | | | | | | | | | | | | |_| |_| | | |_| | | |_| |_| | | | | |_| | | |_| | | | | | | | | | | | | | | |_| |_| |_| |_| |_| |_| |_| .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..120
- Wikipedia, Domino (mathematics)
- Wikipedia, Tromino
Crossrefs
Column k=10 of A364457.
Extensions
Terms n>=4 had to be corrected as was pointed out by Martin Fuller and David Radcliffe - Alois P. Heinz, Apr 05 2025